(本小题14分)如图,已知,分别是椭圆的左、右焦点,过与轴垂直的直线交椭圆于点,且(1)求椭圆的标准方程;(2)已知点,问是否存在直线与椭圆交于不同的两点,,且的垂直平分线恰好过点?若存在,求出直线斜率的取值范围;若不存在,请说明理由.
已知函数f(x)=loga(x+1)(a>1),若函数y=g(x)图象上任意一点P关于原点对称点Q的轨迹恰好是函数f(x)的图象. (1)写出函数g(x)的解析式; (2)当x∈[0,1)时总有f(x)+g(x)≥m成立,求m的取值范围.
已知函数f(x)=log2(x2-ax-a)在区间(-∞,1-]上是单调递减函数.求实数a的取值范围.
已知f(x)=. (1)判断函数的奇偶性; (2)证明:f(x)是定义域内的增函数; (3)求f(x)的值域.
已知定义在R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=. (1)求f(x)在[-1,1]上的解析式; (2)证明:f(x)在(0,1)上是减函数.
已知函数f(x)=log2+log2(x-1)+log2(p-x). (1)求f(x)的定义域; (2)求f(x)的值域.