(本小题满分10分)选修4—5;不等式选讲.设不等式的解集是,.(1)试比较与的大小;(2)设表示数集的最大数.,求证:.
某跨国饮料公司对全世界所有人均GDP(即人均纯收入)在0.5-8千美元的地区销售该公司A饮料的情况的调查中发现:人均GDP处在中等的地区对该饮料的销售量最多,然后向两边递减。 (Ⅰ)下列几个模拟函数中(x表示人均GDP,单位:千美元,y表示年人均A饮料的销量,单位;升),用哪个来描述人均A饮料销量与地区的人均GDP的关系更合适?说明理由。 ①, ②, ③, ④ (Ⅱ)若人均GDP为1千美元时,年人均A饮料的销量为2升;若人均GDP为4千美元时,年人均A饮料的销量为5升,把(Ⅰ)中你所选的模拟函数求出来,并求在各个地区中,年人均A饮料的销量最多是多少? (Ⅲ)因为A饮料在B国被检测出杀虫剂的含量超标,受此事件的影响,A饮料在人均GDP低于3千美元和高于6千美元的地区销量下降5%,其它地区的销量下降10%,根据(Ⅱ)所求出的模拟函数,求在各个地区中,年人均A饮料的销量最多为多少?
如图,在长方体ABCD-A1B1C1D1中,AB=AD=1,AA1=2,G是CC1上的动点。(Ⅰ)求证:平面ADG⊥平面CDD1C1(Ⅱ)判断B1C1与平面ADG的位置关系,并给出证明;(Ⅲ)若G是CC1的中点,求二面角G-AD-C的大小。
在△中,已知a、b、c分别是三内角、、所对应的边长,且(Ⅰ)求角的大小;(Ⅱ)若,试判断△ABC的形状并求角的大小.
在平面直角坐标系上,设不等式组()所表示的平面区域为,记内的整点(即横坐标和纵坐标均为整数的点)的个数为.(Ⅰ)求并猜想的表达式再用数学归纳法加以证明;(Ⅱ)设数列的前项和为,数列的前项和,是否存在自然数m?使得对一切,恒成立。若存在,求出m的值,若不存在,请说明理由。
设圆过点P(0,2), 且在轴上截得的弦RG的长为4.(1)求圆心的轨迹E的方程; (2)过点(0,1),作轨迹的两条互相垂直的弦、,设、 的中点分别为、,试判断直线是否过定点?并说明理由.