如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠ABC=60º,又PA⊥底面ABCD,E为BC的中点. (1)求证:AD⊥PE; (2)设F是PD的中点,求证:CF∥平面PAE.
(10分)如图,已知的两条角平分线和相交于H,,F在上,且. (I)证明:B,D,H,E四点共圆: (II)证明:平分。
已知:如图,⊙O与⊙P相交于A,B两点,点P在⊙O上,⊙O的弦BC切⊙P于点B,CP及其延长线交⊙P于D,E两点,过点E作EF⊥CE交CB延长线于点F.若CD=2,CB=2,求EF的长.
(本小题满分12分) 已知数列满足 (Ⅰ)求证:数列是等比数列; (Ⅱ)设,试判断数列的前项和与的大小关系; (Ⅲ)数列满足,证明:数列是等差数列。
(本小题满分12分) 如图,四棱锥P—ABCD中,底面ABCD,底面ABCD为正方形,|BC|=|PD|=3,E为PC的中点,点G在BC边上且。 (Ⅰ)三棱锥C—DEG的体积; (Ⅱ)在AD边上是否存在点M,使得PA//平面MEG, 若存在,求的值,若不存在,说明理由。
(本小题满分10分) 如图,在一个山坡上的一点A测得山顶一建筑物顶端C(相对于山坡)的斜度为15°,向山顶前进100m到达B点后,又测得顶端C的斜度为30°,依据所测得的数据,能否计算出山顶建筑物CD的高度,若能,请写出计算的方案(只需用文字和公式写出计算的步骤);若不能,请说明理由。