已知各项均为正数的数列 a n 的前 n 项和满足 S 1 > 1 ,且 6 S n = a n + 1 a n + 2 , n ∈ N * .
(1)求 a n 的通项公式; (2)设数列 b n 满足 a n 2 b n - 1 = 1 ,并记 T n 为 b n 的前 n 项和,求证: 3 T n + 1 > log 2 a n + 3 , n ∈ N * .
如图,某建筑物的基本单元可近似地按以下方法构作:先在地平面内作菱形ABCD,边长为1,∠BAD=60°,再在的上方,分别以△与△为底面安装上相同的正棱锥P-ABD与Q-CBD,∠APB=90°.(Ⅰ)求证:PQ⊥BD;(Ⅱ)求二面角P-BD-Q的余弦值;(Ⅲ)求点P到平面QBD的距离.
已知正方体ABCD—中,E为棱CC上的动点,(1)求证:⊥;(2)当E恰为棱CC的中点时,求证:平面⊥;
如图直棱柱ABC-A1B1C1中AB=,AC=3,BC=,D是A1C的中点E是侧棱BB1上的一动点。(1)当E是BB1的中点时,证明:DE//平面A1B1C1;(2)求的值(3)在棱 BB1上是否存在点E,使二面角E-A1C-C是直二面角?若存在求的值,不存在则说明理由。
已知直线过点M(1,2),且直线与x轴正半轴和y轴的正半轴交点分别是A、B,(如图,注意直线与坐标轴的交点都在正半轴上)(1)若三角形AOB的面积是4,求直线的方程。(2)求过点N(0,1)且与直线垂直的直线方程。
已知函数f(x)=ax3+bx2+cx是R上的奇函数,且f(1)=2,f(2)=10(1)确定函数的解析式;(2)用定义证明在R上是增函数;(3)若关于x的不等式f(x2-4)+f(kx+2k)<0在x∈(0,1)上恒成立,求k的取值范围。