已知A、B是椭圆上的两点,且,其中F为椭圆的右焦点.(1)当时,求直线AB的方程;(2)设点,求证:当实数变化时,恒为定值.
如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点,作交PB于点F.(I) 证明: PA∥平面EDB;(II) 证明:PB⊥平面EFD;
已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.
已知抛物线顶点在原点,焦点在x轴上,又知此抛物线上一点A(4,m)到焦点的距离为6. (1)求此抛物线的方程; (2)若此抛物线方程与直线相交于不同的两点A、B,且AB中点横坐标为2,求k的值.
已知椭圆E:的焦点坐标为(),点M(,)在椭圆E上.(Ⅰ)求椭圆E的方程;(Ⅱ)设Q(1,0),过Q点引直线与椭圆E交于两点,求线段中点的轨迹方程;
已知圆,直线.(Ⅰ)若与相切,求的值;(Ⅱ)是否存在值,使得与相交于两点,且(其中为坐标原点),若存在,求出,若不存在,请说明理由.