已知A、B是椭圆上的两点,且,其中F为椭圆的右焦点.(1)当时,求直线AB的方程;(2)设点,求证:当实数变化时,恒为定值.
(本小题共14分)如图,在三棱柱ABC-A1B1C1中,CC1⊥底面ABC,AC=BC,M,N分别是CC1,AB的中点.(Ⅰ)求证:CN⊥AB1;(Ⅱ)求证:CN //平面AB1M.
(本小题共13分)已知函数.(Ⅰ)求函数的最小正周期和值域;(Ⅱ)若为第二象限角,且,求的值.
(本小题共13分)若有穷数列{an}满足:(1)首项a1=1,末项am=k,(2)an+1= an+1或an+1="2an" ,(n=1,2,…,m-1),则称数列{an}为k的m阶数列.(Ⅰ)请写出一个10的6阶数列;(Ⅱ)设数列{bn}是各项为自然数的递增数列,若,且,求m的最小值.(考生务必将答案答在答题卡上,在试卷上作答无效)
(本小题共14分)设函数在处取得极值.(Ⅰ)求与满足的关系式;(Ⅱ)若,求函数的单调区间;(Ⅲ)若,函数,若存在,,使得成立,求的取值范围.
.(本小题共13分)在平面直角坐标系xOy中,为坐标原点,动点与两个定点,的距离之比为.(Ⅰ)求动点的轨迹的方程;(Ⅱ)若直线:与曲线交于,两点,在曲线上是否存在一点,使得,若存在,求出此时直线的斜率;若不存在,说明理由.