已知函数f(x)=|x﹣1|+|x+1|(x∈R)(1)将函数解析式写成分段函数的形式,(2)然后画出函数图象,并写出函数的值域;(3)利用图象写出不等式f(x)>x+2的解集.
椭圆的中心在坐标原点O,右焦点F(c,0)到相应准线的距离为1,倾斜角为45°的直线交椭圆于A,B两点.设AB中点为M,直线AB与OM的夹角为a. (1)用半焦距c表示椭圆的方程及; (2)若2<<3,求椭圆率心率e的取值范围.
设椭圆的中心是坐标原点,焦点在轴上,离心率,已知点到这个椭圆上的点的最远距离是4,求这个椭圆的方程.
在平面直角坐标系中,若,且, (1)求动点的轨迹的方程; (2)已知定点,若斜率为的直线过点并与轨迹交于不同的两点,且对于轨迹上任意一点,都存在,使得成立,试求出满足条件的实数的值。
若F、F为双曲线的左右焦点,O为坐标原点,P在双曲线的左支上,点M在右准线上,且满足;. (1)求该双曲线的离心率; (2)若该双曲线过N(2,),求双曲线的方程; (3)若过N(2,)的双曲线的虚轴端点分别为B、B(B在y轴正半轴上),点A、B在双曲线上,且时,直线AB的方程.
已知椭圆的一条准线方程是其左、右顶点分别是A、B;双曲线的一条渐近线方程为3x-5y=0. (Ⅰ)求椭圆C1的方程及双曲线C2的离心率; (Ⅱ)在第一象限内取双曲线C2上一点P,连结AP交椭圆C1于点M,连结PB并延长交椭圆C1于点N,若. 求证: