(本小题满分14分)如图,椭圆和圆,已知椭圆过点,焦距为2. (1)求椭圆的方程;(2)椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点,直线与椭圆的另一个交点分别是点.设的斜率为,直线斜率为,求的值.
(本小题满分10分)已知,且角是第四象限角,求与的值.
.(本小题满分12分)数列的前项和为,,. (Ⅰ)求数列的通项; (Ⅱ)求数列的前项和.
.(本小题满分12分)某小区要建一个面积为500平方米的矩形绿地,四周有小路,绿地长边外路宽5米,短边外路宽9米,怎样设计绿地的长与宽,使绿地和小路所占的总面积最小,并求出最小值。
. 数列中,,且,又设 (1)求证:数列是等比数列; (2)求数列的通项公式; (3)设(),求数列的前项的和
在塔底的水平面上某点测得塔顶的仰角为θ,由此点向塔底沿直线行走30米,测得塔顶的仰角为2θ,再向塔前进米,又测得塔顶的仰角为4θ,求塔高。