(本小题满分12分)已知圆,点,以线段AB为直径的圆内切于圆,记点B的轨迹为. (Ⅰ)求曲线的方程; (Ⅱ)直线AB交圆于C,D两点,当B为CD中点时,求直线AB的方程.
己知命题:方程表示焦点在轴的椭圆;命题:关于的不等式的解集是R;若“” 是假命题,“”是真命题,求实数的取值范围。
在直角坐标系上取两个定点,再取两个动点且. (I)求直线与交点的轨迹的方程; (II)已知,设直线:与(I)中的轨迹交于、两点,直线、的倾斜角分别为且,求证:直线过定点,并求该定点的坐标.
如图,已知DE⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点。 (I)求证:AF//平面BCE; (II)求证:平面BCE⊥平面CDE; (III)求平面BCE与平面ACD所成锐二面角的大小。
已知一个圆的圆心为坐标原点,半径为.从这个圆上任意一点向轴作垂线,为垂足. (Ⅰ)求线段中点的轨迹方程; (Ⅱ)已知直线与的轨迹相交于两点,求的面积
已知定点F(2,0)和定直线,动圆P过定点F与定直线相切,记动圆圆心P的轨迹为曲线C (1)求曲线C的方程. (2)若以M(2,3)为圆心的圆与抛物线交于A、B不同两点,且线段AB是此圆的直径时,求直线AB的方程