(理)在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分别为AB、SB的中点。(Ⅰ)证明:AC⊥SB;(Ⅱ)求二面角N-CM-B的大小;(Ⅲ)求点B到平面CMN的距离.
已知向量,其中且,(1)当为何值时,;(2)解关于的不等式.
(理科)已知是底面边长为1的正四棱柱,是和的交点.⑴设与底面所成的角的大小为,二面角的大小为,试确定与的一个等量关系,并给出证明;⑵若点到平面的距离为,求正四棱柱的高.
(文科)已知是底面边长为1的正四棱柱,高.求:⑵ 异面直线与所成的角的大小(结果用反三角函数表示);⑵ 四面体的体积.
用铁皮制作一个无盖的圆锥形容器,如图,已知该圆锥的母线与底面所在平面的夹角为,容器的高为.制作该容器需要多少面积的铁皮?该容器的容积又是多少?(衔接部分忽略不计,结果精确到)
本题共有3个小题,第1小题满分5分,第2小题满分6分, 第3小题满分7分.对定义在区间上的函数,若存在闭区间和常数,使得对任意的都有,且对任意的都有恒成立,则称函数为区间上的“U型”函数。(1)求证:函数是上的“U型”函数;(2)设是(1)中的“U型”函数,若不等式对一切的恒成立,求实数的取值范围;(3)若函数是区间上的“U型”函数,求实数和的值.