(本小题满分12分)为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据:
(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,预测时,细菌繁殖个数.附:回归直线的斜率和截距的最小二乘法估计公式分别为:,.
. 设函数=(为自然对数的底数),,记.(Ⅰ)为的导函数,判断函数的单调性,并加以证明;(Ⅱ)若函数=0有两个零点,求实数的取值范围.
已知点A(2,0),. P为上的动点,线段BP上的点M满足|MP|=|MA|. (Ⅰ)求点M的轨迹C的方程; (Ⅱ)过点B(-2,0)的直线与轨迹C交于S、T两点,且,求直线的方程.
某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为元(为常数,且,设该食品厂每公斤蘑菇的出厂价为元(),根据市场调查,销售量与成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(Ⅰ)求该工厂的每日利润元与每公斤蘑菇的出厂价元的函数关系式; (Ⅱ)若,当每公斤蘑菇的出厂价为多少元时,该工厂的利润最大,并求最大值.
如图,在五面体ABCDEF中,FA平面ABCD,AD//BC//FE,ABAD,AF=AB=BC=FE=AD.(Ⅰ)求异面直线BF与DE所成角的余弦值;(Ⅱ)在线段CE上是否存在点M,使得直线AM与平面CDE所成角的正弦值为?若存在,试确定点M的位置;若不存在,请说明理由.
已知数列的前项和为,满足.(Ⅰ)证明:数列为等比数列,并求出;(Ⅱ)设,求的最大项.