已知点A(2,0),. P为上的动点,线段BP上的点M满足|MP|=|MA|. (Ⅰ)求点M的轨迹C的方程; (Ⅱ)过点B(-2,0)的直线与轨迹C交于S、T两点,且,求直线的方程.
已知, 计算: (1)(2)
求值:(1); (2)
(示范性高中做) 已知正方体的棱长为1,点是棱的中点,点是棱的中点,点是上底面的中心.(Ⅰ)求证:MO∥平面NBD; (Ⅱ)求二面角的大小; (Ⅲ)求三棱锥的体积.
(本小题共12分) (普通高中做) 如图, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,点D是AB的中点, (I)求证:AC⊥BC1; (II)求证:AC 1//平面CDB1; (III)求异面直线 AC1与 B1C所成角的余弦值.
(理科做) 甲、乙两队进行一场排球比赛.根据以往经验,单局比赛甲队胜乙队的概率为0.6,本场比赛采用五局三胜制,即先胜三局的队获胜,比赛结束.设各局比赛相互间没有影响.令为本场比赛的局数.求的概率分布和数学期望.(精确到0.0001)