某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为元(为常数,且,设该食品厂每公斤蘑菇的出厂价为元(),根据市场调查,销售量与成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.(Ⅰ)求该工厂的每日利润元与每公斤蘑菇的出厂价元的函数关系式; (Ⅱ)若,当每公斤蘑菇的出厂价为多少元时,该工厂的利润最大,并求最大值.
已知椭圆的上顶点为,直线交椭圆于两点,设直线的斜率分别为. (1)若时,求的值; (2)若时,证明直线过定点.
某公司生产的某批产品的销售量万件(生产量与销售量相等)与促销费用万元满足(其中为正常数).已知生产该批产品还要投入成本万元(不包含促销费用),产品的销售价格定为元/件. (1)将该产品的利润万元表示为促销费用万元的函数; (2)当促销费用投入多少万元时,该公司的利润最大?
如图,过四棱柱形木块上底面内的一点和下底面的对角线将木块锯开,得到截面. (1)请在木块的上表面作出过的锯线,并说明理由; (2)若该四棱柱的底面为菱形,四边形时矩形,试证明:平面平面.
已知向量. (1)当时,求的值; (2)设函数,当时,求的值域.
选修4—5:不等式选讲 已知正实数满足:. (Ⅰ)求的最小值; (II)设函数,对于(Ⅰ)中求得的,是否存在实数使成立,说明理由.