已知椭圆的上顶点为,直线交椭圆于两点,设直线的斜率分别为.(1)若时,求的值;(2)若时,证明直线过定点.
设双曲线的两个焦点分别为,离心率为2. (Ⅰ)求此双曲线的渐近线的方程;(Ⅱ)若、分别为上的点,且,求线段的中点的轨迹方程,并说明轨迹是什么曲线。
已知双曲线与椭圆共焦点,且以为渐近线,求双曲线方程.
F1、F2是的两个焦点,M是双曲线上一点,且,求三角形△F1MF2的面积.
已知抛物线的顶点在原点,对称轴是x轴,抛物线上的点M(-3,m)到焦点的距离等于5,求抛物线的方程和m的值.
已知抛物线.过动点M(,0)且斜率为1的直线与该抛物线交于不同的两点A、B,.(Ⅰ)求的取值范围;(Ⅱ)若线段AB的垂直平分线交轴于点N,求面积的最大值