(本小题满分12分) 某工厂生产、两种产品,计划每种产品的生产量不少于15千克,已知生产产品1千克要用煤9吨,电力4千瓦,3个工作日;生产产品1千克要用煤4吨,电力5千瓦,10个工作日。又知生产出产品1千克可获利7万元,生产出产品1千克可获利12万元,现在工厂只有煤360吨,电力200千瓦,300个工作日, (1)列出满足题意的不等式组,并画图; (2)在这种情况下,生产、B产品各多少千克能获得最大经济效益.
(1)已知,,求的值。 (2)已知,,,是第三象限角,求的值。
已知数列中,,,是数列的前项和,且,. (1)求的值; (2)求数列的通项公式; (3)若是数列的前项和,且对一切都成立,求实数取值范围.
已知函数,, (1)若函数的两个极值点为,求函数的解析式; (2)在(1)的条件下,求函数的图象过点的切线方程; (3)对一切恒成立,求实数的取值范围。
设椭圆,直线过椭圆左焦点且不与轴重合, 与椭圆交于,两点,当与轴垂直时,,若点且 (1)求椭圆的方程; (2)直线绕着旋转,与圆交于两点,若,求的面积的取值范围(为椭圆的右焦点)。
如图在四棱锥中,底面是菱形,,底面,是的中点,是中点。 (1)求证:∥平面; (2)求证:平面⊥平面; (3)求与平面所成的角。