如图,过四棱柱形木块上底面内的一点和下底面的对角线将木块锯开,得到截面.(1)请在木块的上表面作出过的锯线,并说明理由;(2)若该四棱柱的底面为菱形,四边形时矩形,试证明:平面平面.
求值(1) (2)已知,求的值.
已知椭圆的右焦点为,离心率为。(1)若,求椭圆的方程。(2)设直线与椭圆相交于两点,分别为线段的中点。若坐标原点在以线段为直径的圆上,且,求的取值范围。
已知函数(1)求函数的单调区间;(2)设,对任意的,总存在,使得不等式成立,求实数的取值范围。
已知函数 (1)若在上是增函数,求实数的取值范围;(2)若是的极值点,求在上的最小值和最大值.
如图,三棱柱的所有棱长都为2,为中点,平面(1)求证:平面;(2)求二面角的余弦值;(3)求点到平面的距离.