(本小题满分12分)已知函数.(1)求函数的最小正周期;(2)若是第一象限角,且,求的值.
某种商品原来每件售价为25元,年销售8万件. (1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元? (2)为了扩大该商品的影响力,提高年销售量.公司决定明年对该商品进行全面技术革新和营销策略改革,并提高定价到元.公司拟投入万元作为技改费用,投入50万元作为固定宣传费用,投入万元作为浮动宣传费用.试问:当该商品明年的销售量至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.
(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD,PB=PD,⊥,⊥,,分别是,的中点,连结. 求证:(1)∥平面; (2)⊥平面.
已知向量,且共线,其中. (1)求的值; (2)若,求的值.
(本小题满分10分) 记为从个不同的元素中取出个元素的所有组合的个数.随机变量表示满足的二元数组中的,其中,每一个(0,1,2, ,)都等可能出现.求.
如图,在直三棱柱中,,,,动点满足,当时,. (1)求棱的长; (2)若二面角的大小为,求的值..