已知:如图, CF⊥AB于F,ED⊥AB于D,∠1=∠2,求证:FG∥BC
图①、图②分别是某种型号跑步机的实物图与示意图.已知跑步机手柄 AB与地面 DE平行,踏板 CD长为1.5 m, CD与地面 DE的夹角 ∠ CDE = 15 ° ,支架 AC长为1 m, ∠ ACD = 75 ° ,求跑步机手柄 AB所在直线与地面 DE之间的距离.(结果精确到0.1 m.参考数据: sin 15 ° ≈ 0 . 26 , cos 15 ° ≈ 0 . 97 , tan 15 ° ≈ 0 . 27 , 3 ≈ 1 . 73 )
国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示.
甲
乙
进价(元/千克)
x
x+4
售价(元/千克)
20
25
已知用1200元购进甲种水果的重量与用1500元购进乙种水果的重量相同.
(1)求x的值;
(2)若超市购进这两种水果共100千克,其中甲种水果的重量不低于乙种水果重量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?
在中国共产党成立100周年之际,我市某中学开展党史学习教育活动.为了了解学生学习情况,在七年级随机抽取部分学生进行测试,并依据成绩(百分制)绘制出以下两幅不完整的统计图.请根据图中信息回答下列问题:
(1)本次抽取调查的学生共有 人,扇形统计图中表示 C等级的扇形圆心角度数为 .
(2) A等级中有2名男生,2名女生,从中随机抽取2人参加学校组织的知识问答竞赛,请用画树状图或列表的方法,求恰好抽到一男一女的概率.
如图,一次函数 y 1 = kx + b ( k ≠ 0 ) 的图象与反比例函数 y 2 = m x ( m ≠ 0 ) 的图象交于 A(﹣1, n), B(3,﹣2)两点.
(1)求一次函数和反比例函数的解析式;
(2)点 P在 x轴上,且满足△ ABP的面积等于4,请直接写出点 P的坐标.
如图,四边形 ABCD是菱形,点 E、 F分别在边 AB、 AD的延长线上,且 BE = DF ,连接 CE、 CF.求证: CE = CF .