阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(1+x)]=(1+x)2[1+x]=(1+x)3(1)上述分解因式的方法是 法,共应用了 次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2010,则需要应用上述方法 次,分解因式后的结果是 .(3)请用以上的方法分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数),必须有简要的过程.
数学课上林老师出示了问题:如图,AD∥BC,∠AEF=90°AD=AB=BC=DC,∠B=90°,点E是边BC的中点,且EF交∠DCG的平分线CF于点F,求证:AE=EF. 同学们作了一步又一步的研究: (1)经过思考,小明展示了一种解题思路:如图1,取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF,小明的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小颖提出一个新的想法:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (3)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.
已知:如图, AD=CD=CB=AB=a,DA∥CB,AB⊥CB,∠BAC的平分线交BC于E,作EF⊥AC于F,作FG⊥AB于G. (1)求AC的长; (2)求证:AB=AG.
在争创全国卫生城市的活动中,我市“青年突击队”决定义务清运一堆重达100吨的垃圾,后因附近居民主动参与到义务劳动中,使任务提前完成.下面是记者与青年突击队员的一段对话: 通过这段对话,请你求出青年突击队原来每小时清运多少吨垃圾?
如图所示,在所给正方形网格图中完成下列各题:(用直尺画图,保留痕迹) (1)求出格点△ABC(顶点均在格点上)的面积; (2)画出格点△ABC关于直线DE对称的△A′B′C′; (3)在DE上画出点Q,使△QAB的周长最小.
如图AC交BD于点O,请你从三项中选出两个作为条件,另一个作为结论,写出一个真命题,并加以证明. ①OA=OC②OB=OD③AB∥CD