阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(1+x)]=(1+x)2[1+x]=(1+x)3(1)上述分解因式的方法是 法,共应用了 次.(2)若分解1+x+x(x+1)+x(x+1)2+…+x(x+1)2010,则需要应用上述方法 次,分解因式后的结果是 .(3)请用以上的方法分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数),必须有简要的过程.
计算: | - 2 | - ( 5 + π ) 0 + ( - 1 6 ) - 1 .
如图,已知二次函数的图象顶点在原点,且点 ( 2 , 1 ) 在二次函数的图象上,过点 F ( 0 , 1 ) 作 x 轴的平行线交二次函数的图象于 M 、 N 两点.
(1)求二次函数的表达式;
(2) P 为平面内一点,当 ΔPMN 是等边三角形时,求点 P 的坐标;
(3)在二次函数的图象上是否存在一点 E ,使得以点 E 为圆心的圆过点 F 和点 N ,且与直线 y = - 1 相切.若存在,求出点 E 的坐标,并求 ⊙ E 的半径;若不存在,说明理由.
如图,已知 AB 是 ⊙ O 的直径,点 C 是圆上异于 A 、 B 的一点,连结 BC 并延长至点 D ,使 CD = BC ,连结 AD 交 ⊙ O 于点 E ,连结 BE .
(1)求证: ΔABD 是等腰三角形;
(2)连结 OC 并延长,与以 B 为切点的切线交于点 F ,若 AB = 4 , CF = 1 ,求 DE 的长.
如图,一次函数 y = kx + b 的图象与反比例函数 y = m x ( x < 0 ) 的图象相交于点 A ( - 3 , n ) , B ( - 1 , - 3 ) 两点,过点 A 作 AC ⊥ OP 于点 C .
(1)求一次函数和反比例函数的表达式;
(2)求四边形 ABOC 的面积.
如图, AB 和 CD 两幢楼地面距离 BC 为 30 3 米,楼 AB 高30米,从楼 AB 的顶部点 A 测得楼 CD 的顶部点 D 的仰角为 45 ° .
(1)求 ∠ CAD 的大小;
(2)求楼 CD 的高度(结果保留根号).