(本小题满分10分)选修4-4:坐标系与参数方程已知曲线的参数方程为(为参数),在同一平面直角坐标系中,将曲线上的点按坐标变换得到曲线.(1)求曲线的普通方程;(2)若点在曲线上,点,当点在曲线上运动时,求中点的轨迹方程.
设等差数列的前项和满足,. (1)求的通项公式; (2)求的前项和.
已知椭圆的离心率为,为椭圆在轴正半轴上的焦点,、两点在椭圆上,且,定点. (1)求证:当时; (2)若当时有,求椭圆的方程; (3)在(2)的椭圆中,当、两点在椭圆上运动时,试判断是否有最大值,若存在,求出最大值,并求出这时、两点所在直线方程,若不存在,给出理由.
已知函数. (1)当时,求函数的单调区间; (2)若函数在处取得极值,对,恒成立,求实数的取值范围; (3)当时,求证:.
已知椭圆经过点,离心率,直线与椭圆交于,两点,向量,,且. (1)求椭圆的方程; (2)当直线过椭圆的焦点(为半焦距)时,求直线的斜率.
已知动圆() (1)当时,求经过原点且与圆相切的直线的方程; (2)若圆恰在圆的内部,求实数的取值范围.