(本小题满分12分)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”、“待定”、“淘汰”三类票各一张.每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖.(1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和的分布列及数学期望.
如图,用半径为cm,面积为cm2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 该容器最多盛水多少?(结果精确到0.1 cm3)
已知椭圆的离心率为,短轴的一个端点到右焦点的距离为. (1)求椭圆C的方程; (2)设直线l与椭圆c交于A、B两点,坐标原点O到直线的距离为,求面积的最大值.
某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为
商场经销一件该商品,采用1期付款,其利润为200元;分二期或3期付款,其利润为250元;分4期或5期付款,其利润为300元。表示经销一件该商品的利润. (1)求事件A:“购买该商品的3位顾客中,至少有1位采用1期付款”的概率. (2)求的分布列及期望.
一个袋中有1个白球和4个黑球,每次从中任取一个球,每次所取的球放回,直到取得白球为止,但摸球次数不超过5次,求取球次数的分布列
将3个小球任意地放入4个玻璃杯中,杯子中球的最多个数为,求的分布列.