(本小题满分12分)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”、“待定”、“淘汰”三类票各一张.每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖.(1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和的分布列及数学期望.
已知直线与双曲线; (1)当a为何值时,直线与双曲线有一个交点; (2)直线与双曲线交于P、Q两点且以PQ为直径的圆过坐标原点,求a值。
(本小题满分14分) 如图,椭圆的顶点为焦点为S□= 2S□. (Ⅰ)求椭圆C的方程; (Ⅱ)设直线过P(1,1),且与椭圆相交于A,B两点,当P是AB的中点时,求直线的方程. (Ⅲ)设n为过原点的直线,是与n垂直相交于P点、与 椭圆相交于A,B两点的直线,,是否存在上述直线使以AB为直径的圆过原点?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分12分) 如图,已知直线与抛物线相交于两点,与轴相交于点,若. (Ⅰ)求证:点的坐标为(1,0); (Ⅱ)求△AOB的面积的最小值.
(本小题满分12分) 给定两个命题,:对任意实数都有恒成立;:关于的方程有实数根.如果∨为真命题,∧为假命题,求实数的取值范围.
(本小题满分12分) 已知数列的前项和为 (Ⅰ)求数列的通项公式; (Ⅱ)若,求数列的前项和.