如图,某商业中心O有通往正东方向和北偏东30º方向的两条街道,某公园P位于商业中心北偏东角(),且与商业中心O的距离为公里处,现要经过公园P修一条直路分别与两条街道交汇于A,B两处。 (1)当AB沿正北方向时,试求商业中心到A,B两处的距离和; (2)若要使商业中心O到A,B两处的距离和最短,请确定A,B的最佳位置。
已知函数(e为自然对数的底数). (1)求函数的单调增区间; (2)设不等式的解集为M,且集合,求实数t的取值范围.
已知是内任意一点,连结并延长交对边于,,,则.这是平面几何的一个命题,其证明常常采用“面积法”: . 运用类比,猜想对于空间中的四面体,存在什么类似的结论,并用“体积法”证明。
已知为实数,函数. (1) 若,求函数在[-,1]上的极大值和极小值; (2)若函数的图象上有与轴平行的切线,求的取值范围.
设函数. (1)求不等式的解集; (2)若不等式的解集是非空的集合,求实数的取值范围.
某单位要建造一个长方体无盖贮水箱,其容积为48m3,深为3m,如果池底每1m2的造价为40元,池壁每1m2的造价为20元,问怎样设计水箱能使总造价最低,最低总造价是多少元?