如图,A,B,C是椭圆M:上的三点,其中点A是椭圆的右顶点,BC过椭圆M的中心,且满足AC⊥BC,BC=2AC。(1)求椭圆的离心率;(2)若y轴被△ABC的外接圆所截得弦长为9,求椭圆方程。
如图,△ABC中,AC=BC=AB,ABED是边长为1的正方形,EB⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;
圆柱的高是8 cm,表面积是130 π cm2,求它的底面圆半径和体积.
已知数列满足 ()且(1)求的值(2)求的通项公式(3)令,求的最小值及此时的值
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为层,则每平方米的平均建筑费用为(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?(注:平均综合费用平均建筑费用平均购地费用,平均购地费用)
已知是等差数列,且(1)求数列的通项公式及前项的和(2)令,求的前项的和