数列,,满足:,,. (1)若数列是等差数列,求证:数列是等差数列;(2)若数列,都是等差数列,求证:数列从第二项起为等差数列;(3)若数列是等差数列,试判断当时,数列是否成等差数列?证明你的结论.
(本小题满分15分)已知椭圆的离心率为,其左焦点到点的距离为. (Ⅰ)求椭圆的方程; (Ⅱ)过右焦点的直线与椭圆交于不同的两点、,则内切圆的圆面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.
(本小题满分15分)如图,在直三棱柱中,平面侧面且. (Ⅰ)求证:; (Ⅱ)若直线AC与平面所成的角为,求锐二面角的大小.
(本小题满分15分)设数列为等差数列,且;数列的前项和为. (Ⅰ)求数列,的通项公式; (Ⅱ)若为数列的前项和,求.
(本小题满分15分)已知,且,设,的图象相邻两对称轴之间的距离等于. (Ⅰ)求函数的解析式; (Ⅱ)在△ABC中,分别为角的对边,,,求面积的最大值.
(本小题满分14分)已知函数. (Ⅰ)若函数的图象在处的切线斜率为,求实数的值; (Ⅱ)在(Ⅰ)的条件下,求函数的单调区间; (Ⅲ)若函数在上是减函数,求实数的取值范围.