如图,我市有一个健身公园,由一个直径为2km的半圆和一个以为斜边的等腰直角三角形构成,其中为的中点.现准备在公园里建设一条四边形健康跑道,按实际需要,四边形的两个顶点分别在线段上,另外两个顶点在半圆上, ,且间的距离为1km.设四边形的周长为km.(1)若分别为的中点,求长;(2)求周长的最大值.
如图,已知椭圆:与双曲线的离心率互为倒数,且圆:的圆心是椭圆的左顶点,,设圆与椭圆交于点与点.(1)求的最小值;(2)设点是椭圆上异于,的任意一点,且直线分别与轴交于点,为坐标原点,求的最小值.
已知椭圆的离心率为,定点,椭圆短轴的端点是、,且.(1)求椭圆两焦点与点构成三角形的面积;(2)设过点且斜率不为的直线交椭圆于,两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由.
如图所示,已知圆O1与圆O2外切,它们的半径分别为4、2,圆C与圆O1、圆O2外切.(1)建立适当的坐标系,求圆C的圆心的轨迹方程;(2)在(1)的坐标系中,若圆C的半径为3,求圆C的方程.
抛物线的准线方程为,过抛物线上的两点A,B作正方形ABCD使得边CD直线方程为求正方形的边长
已知三角形的三个顶点坐标分别为:点A(0,1)、B(4,-1)、C(2,5)(1)若经过点A的直线l与点B和点C的距离相等,求直线l的方程;(2)若点是外接圆上的动点,求的取值范围.