已知椭圆的离心率为,定点,椭圆短轴的端点是、,且.(1)求椭圆两焦点与点构成三角形的面积;(2)设过点且斜率不为的直线交椭圆于,两点.试问轴上是否存在定点,使平分?若存在,求出点的坐标;若不存在,说明理由.
已知函数的部分图象如图所示. (1)求函数的解析式,并写出的单调递减区间; (2)已知的内角分别是A,B,C,角A为锐角,的值.
选修4-5;不等式选讲 已知 (1)求的解集; (2)若-恒成立,求的取值范围.
选修4-4:坐标系与参数方程选讲 已知在直角坐标系中,直线的参数方程为,(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为. (Ⅰ)求直线的普通方程和曲线的直角坐标方程; (Ⅱ)设点是曲线上的一个动点,求它到直线的距离的取值范围.
选修4-1:几何证明选讲 如图,是的直径,与相切于,为线段上一点,连接、分别交于、两点,连接交于点. (Ⅰ)求证:四点共圆; (Ⅱ)若为的三等分点且靠近,,,求线段的长.
已知. (1)求的单调区间; (2)令,则时有两个不同的根,求的取值范围; (3)存在,且,使成立,求的取值范围.