(本小题满分10分,几何证明选讲)如图,与圆相切于点,是的中点,过点引圆的割线,与圆相交于点,连结.求证:.
某校要用三辆汽车从新校区把教职工接到老校区,已知从新校区到老校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为.若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响. (Ⅰ)若三辆汽车中恰有一辆汽车被堵的概率为,求走公路②堵车的概率;(Ⅱ)在(Ⅰ)的条件下,求三辆汽车中被堵车辆的个数的分布列和数学期望。
设锐角△ABC的三内角A,B,C的对边分别为a,b,c,向量 , ,已知与共线。 (Ⅰ)求角A的大小;(Ⅱ)若,,且△ABC的面积小于,求角B的取值范围。
(本题满分14分)已知点及圆:.(Ⅰ)若直线过点且与圆心的距离为1,求直线的方程;(Ⅱ)设过直线与圆交于、两点,当时,求以为直径的圆的方程;(Ⅲ)设直线与圆交于,两点,是否存在实数,使得过点的直线 垂直平分弦?若存在,求出实数的值;若不存在,请说明理由.
(本题满分12分)如图,已知所在的平面,分别为的中点,,(Ⅰ)求证:; (Ⅱ)求证:;(Ⅲ)求三棱锥的体积.
(本题满分12分)已知二次函数满足且.(Ⅰ)求的解析式;(Ⅱ)当时,不等式:恒成立,求实数的范围.