(本小题满分14分)如图,四棱锥的底面ABCD 是平行四边形,平面PBD⊥平面 ABCD, PB=PD,⊥,⊥,,分别是,的中点,连结.求证:(1)∥平面;(2)⊥平面.
已知:如图,点C为线段AB上一点,△ACM、△CBN是等边三角形,可以说明:△ACN≌△MCB,从而得到结论:AN=BM.现要求: (1)将△ACM绕C点按逆时针方向旋转180°,使A点落在CB上.请对照原题图在下图中画出符合要求的图形(不写作法,保留作图痕迹). (2)在(1)所得到的图形中,结论“AN=BM”是否还成立?若成立,请给予证明;若不成立,请说明理由. (3)在(1)所得到的图形中,设MA的延长线与BN相交于D点,请你判断△ABD与四边形MDNC的形状,并说明你的结论的正确性.
(阅读下面的题目及分析过程,并按要求进行证明. 已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE. 求证:AB=CD. 分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形. 现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.
已知:如图,△ABC中,AB=AC,∠A=120°. (1)用直尺和圆规作AB的垂直平分线,分别交BC、AB于点M、N(保留作图痕迹,不写作法). (2)猜想CM与BM之间有何数量关系,并证明你的猜想.
已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使 CE=CD.求证:BD=DE.
如图,∠OBC=∠OCB,∠AOB=∠AOC,请你写一个能用全部已知条件才能推出的结论,并证明你的结论.