(本小题12分)已知如图,圆和抛物线,圆的切线与抛物线交于不同的点,.(1)当直线的斜率为时,求线段的长;(2)设点和点关于直线对称,问是否存在圆的切线使得?若存在,求出直线的方程;若不存在,请说明理由.
(本小题10分)已知圆经过、两点,且圆心在直线上.(1) 求圆的方程;(2) 若直线经过点且与圆相切,求直线的方程.
(本小题10分)如图已知在三棱柱ABC——A1B1C1中,AA1⊥面ABC,AC=BC,M、N、P、Q分别是AA1、BB1、AB、B1C1的中点. (1) 求证:面PCC1⊥面MNQ;(2) 求证:PC1∥面MNQ。
(本小题8分)已知且,求的最小值
(本题10分)如图一边长为48cm的正方形铁皮,四角各截去一个大小相同的小正方形,然后折起,可以做成一个无盖长方体容器。所得容器的体积V(单位:)是关于截去的小正方形的边长x(单位:)的函数。⑴ 随着x的变化,容积V是如何变化的?⑵ 截去的小正方形的边长为多少时,容器的容积最大?最大容积是多少?