(本题10分)如图一边长为48cm的正方形铁皮,四角各截去一个大小相同的小正方形,然后折起,可以做成一个无盖长方体容器。所得容器的体积V(单位:)是关于截去的小正方形的边长x(单位:)的函数。⑴ 随着x的变化,容积V是如何变化的?⑵ 截去的小正方形的边长为多少时,容器的容积最大?最大容积是多少?
已知直线与椭圆相交于A、B两点.(1)若椭圆的离心率为,焦距为2,求线段AB的长;(2)若向量与向量互相垂直(其中O为坐标原点),当椭圆的离心率 时,求椭圆的长轴长的最大值
已知函数,数列满足,(1)求数列的通项公式;(2)若数列满足,求
在一次语文测试中,有一道把我国近期新书:《声涯》、《关于上班这件事》、《长尾理论》、《游园惊梦:昆曲艺术审美之旅》与它们的作者连线题,已知连对一个得3分,连错一个不得分,一位同学该题得分. (1)求该同学得分不少于6分的概率; (2)求的分布列及数学期望.
已知.(1)求函数的单调增区间;(2)若的值
已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(1)求曲线C的方程;(2)是否存在正数m, 对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有 若存在,求出m的取值范围;若不存在,请说明理由。