(本小题12分)已知如图,圆和抛物线,圆的切线与抛物线交于不同的点,.(1)当直线的斜率为时,求线段的长;(2)设点和点关于直线对称,问是否存在圆的切线使得?若存在,求出直线的方程;若不存在,请说明理由.
如图,直角三角形的顶点坐标,直角顶点,顶点在轴上,点为线段的中点(1)求边所在直线方程;(2)为直角三角形外接圆的圆心,求圆的方程;(3)求过(-2,4)与圆相切的直线方程.
(本小题满分14分)已知函数,.(Ⅰ)求函数的单调区间;(Ⅱ)若函数在[上有零点,求的最大值;(Ⅲ)证明:在其定义域内恒成立,并比较与(且)的大小.
(本小题满分12分)已知椭圆:的离心率,过点的直线与椭圆交于两点,且,求面积的最大值及取得最大值时椭圆的方程.
(本小题共12分)设数列的前项和为,已知,().(Ⅰ)求证:数列为等差数列,并分别写出和关于的表达式;(Ⅱ)若,为数列前项和,求;(Ⅲ)是否存在自然数,使得? 若存在,求的值;若不存在,说明理由.
(本小题满分12分)如图,在四棱锥中,,, ,.⑴求证平面;⑵试求二面角的大小.