(本小题12分)已知如图,圆和抛物线,圆的切线与抛物线交于不同的点,.(1)当直线的斜率为时,求线段的长;(2)设点和点关于直线对称,问是否存在圆的切线使得?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分13分)已知函数 (1)若在上是减函数,求的最大值; (2)若的单调递减区间是,求函数y=图像过点的切线与两坐标轴围成图形的面积。
(本小题满分12分)已知关于x的二次函数f(x)=ax2-2bx+1. (1)已知集合P={-2,1,2 },Q={-1,1,2},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率; (2)在区域内随机任取一点(a,b).求函数y=f(x)在区间[1,+∞)上是增函数的概率.
如图所示,四边形ABCD为矩形,BC⊥平面ABE,F为CE上的点,且BF⊥平面ACE. (1)求证:AE⊥BE. (2)设点M为线段AB的中点,点N为线段
本题满分12分) 已知数列满足,它的前项和为,且. ①求通项, ②若,求数列的前项和的最小值.
(本小题满分12分) 已知的周长为,且. (1)求边长的值; (2)若,求的值.