(本小题满分14分)已知函数,.(Ⅰ)求函数的单调区间;(Ⅱ)若函数在[上有零点,求的最大值;(Ⅲ)证明:在其定义域内恒成立,并比较与(且)的大小.
某个海边旅游景点,有小型游艇出租供游客出海游玩,收费标准如下:租用时间不超过2小时收费100,超过2小时的部分按每小时100收取(不足一小时按一小时计算).现甲、乙两人独立来该景点租用小型游艇,各租一次.设甲、乙租用不超过两小时的概率分别为,;租用2小时以上且不超过3小时的概率分别为,,且两人租用的时间都不超过4小时.(Ⅰ)求甲、乙两人所付费用相同的概率;(Ⅱ)设甲、乙两人所付的费用之和为随机变量,求的分布列与数学期望.
已知分别在射线(不含端点)上运动,,在中,角、、所对的边分别是、、.(Ⅰ)若、、依次成等差数列,且公差为2.求的值;(Ⅱ)若,,试用表示的周长,并求周长的最大值.
(本小题满分13分)已知函数,其中.(1)当时,求函数的图象在点处的切线方程;(2)当时,证明:存在实数,使得对于任意的实数,都有成立;(3)当时,是否存在实数,使得关于的方程仅有负实数解?当时的情形又如何?(只需写出结论).
(本小题满分14 分)设,分别为椭圆:的左、右焦点,点为椭圆的左顶点,点为椭圆的上顶点,且.(1)若椭圆的离心率为,求椭圆的方程;(2)设为椭圆上一点,且在第一象限内,直线与轴相交于点,若以为直径的圆经过点,证明:点在直线上.
(本小题满分13 分)某厂商调查甲、乙两种不同型号电视机在10 个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”.(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求的概率;(3)若,记乙型号电视机销售量的方差为,根据茎叶图推断为何值时,达到最小值.(只需写出结论) (注:方差,其中为,,…,的平均数)