(本小题满分13分)我国东部某风景区内住着一个少数民族部落,该部落拟投资万元用于修复和加强民俗文化基础设施.据测算,修复好部落民俗文化基础设施后,任何一个月(每月均按天计算)中第天的游客人数近似满足(单位:千人),第天游客人均消费金额近似满足(单位:元).(1)求该部落第天的日旅游收入(单位:千元,,)的表达式;(2)若以一个月中最低日旅游收入金额的%作为每一天应回收的投资成本,试问该部落至少经过几年就可以收回全部投资成本.
(本小题12分)如图,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB中点,D为PB中点,且△PMB为正三角形.(Ⅰ)求证:DM∥平面APC;(II)求证:平面ABC⊥平面APC.
(本小题满分14分)已知函数.(Ⅰ)求的值;(Ⅱ)若数列 ,求数列的通项公式;(Ⅲ)若数列满足,是数列的前项和,是否存在正实数,使不等式对于一切的恒成立?若存在,请求出的取值范围;若不存在,请说明理由.
(本小题满分12分)已知点是区域,()内的点,目标函数,的最大值记作.若数列的前项和为,,且点()在直线上.(Ⅰ)证明:数列为等比数列;(Ⅱ)求数列的前项和.
(本小题满分12分)攀岩运动是一项刺激而危险的运动,如图(1)在某次攀岩活动中,两名运动员在如图所在位置,为确保运动员的安全,地面救援者应时刻注意两人离地面的距离,以备发生危险时进行及时救援. 为了方便测量和计算,画出示意图,如图(2)所示,点分别为两名攀岩者所在位置,点为山的拐角处,且斜坡AB的坡角为,点为山脚,某人在地面上的点处测得的仰角分别为, ,求:(Ⅰ)点间的距离及点间的距离;(Ⅱ)在点处攀岩者距地面的距离.
(本小题满分10分)福州市某大型家电商场为了使每月销售空调和冰箱获得的总利润达到最大,对某月即将出售的空调和冰箱进行了相关调查,得出下表:
问:如果根据调查得到的数据,该商场应该怎样确定空调和冰箱的月供应量,才能使商场获得的总利润最大?总利润的最大值为多少元?