设x>0,y>0且x≠y,求证
已知数列 a n 是首项为正数的等差数列,数列 1 a n a n + 1 的前 n 项和为 n 2 n + 1 . (Ⅰ)求数列 a n 的通项公式; (Ⅱ)设 b n = a n + 1 ·2 a n ,求数列 b n 的前 n 项和 T n .
如图,三棱台DEF-ABC中, A B = 2 D E , G , H 分别为 A C , B C 的中点.
(Ⅰ)求证: B D ∥ 平面 F G H ; (Ⅱ)若 C F ⊥ B C , A B ⊥ B C 求证:平面 B C D ⊥ 平面 E G H .
△ABC 中,角 A,B,C 所对的边分别为 a,b,c .已知 cosB= 3 3 ,sin(A+B)= 6 9 ,ac=2 3 求 sinA 和 c 的值.
某中学调查了某班全部 名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
(1)从该班随机选 名同学,求该同学至少参加上述一个社团的概率;
(2)在既参加书法社团又参加演讲社团的 名同学中,有5名男同学 A 1 , A 2 , A 3 , A 4 , A 5 , 名女同学 B 1 , B 2 , B 3 现从这 名男同学和 名女同学中各随机选 人,求 A 1 被选中且 B 1 未被选中的概率.
设函数 f ( x ) = ln ( x + 1 ) + a ( x 2 - x ) ,其中 a ∈ R . (Ⅰ)讨论函数 f ( x ) 极值点的个数,并说明理由; (Ⅱ)若 ∀ x > 0 , f ( x ) ≥ 0 成立,求 a 的取值范围.