某公司租地建仓库,每月土地占用费y1与车库到车站的距离成反比,而每月库存货物的运费y2与到车站的距离成正比,如果在距车站10公里处建仓库,这两项费用y1和y2分别为2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站多少公里处?
(本小题满分12分)已知, (1)求及; (2)求的值.
计算以下式子的值: (1); (2).
已知函数. 若时函数有三个互不相同的零点,求实数的取值范围; 若对任意的,不等式对任意恒成立,求实数的取值范围.
已知椭圆C的中心在原点,焦点在坐标轴上,短轴的一个端点B(0,4),离心率e=0.6. (1)求椭圆C的方程; (2)若O(0,0),P(2,2),试探究在椭圆C内部是否存在整点Q(平面内横、纵坐标都是 整数的点为整点),使得△OPQ的面积S△OPQ=4?若存在,请指出共有几个这样的点(不必具体求出这些点的坐标);否则,说明理由.
已知等比数列{}的前项和为,且满足. (1)求的值及数列{}的通项公式; (2)若数列{}满足,求数列{}的前和.