如图,圆O为三棱锥P-ABC的底面ABC的外接圆,AC是圆O的直径,PABC,点M是线段PA的中点.(1)求证: BCPB;(2)设PAAC,PA=AC=2,AB=1,求三棱锥P-MBC的体积;(3)在ABC内是否存在点N,使得MN∥平面PBC?请证明你的结论.
如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=. (Ⅰ)求证:BD⊥平面PAC; (Ⅱ)求点C到平面PBD的距离.
如图,为了计算北江岸边两景点与的距离,由于地形的限制,需要在岸上选取和两个测量点,现测得,,,,,求两景点与的距离(假设在同一平面内,测量结果保留整数;参考数据:)
求与直线平行且距离等于的直线方程.
)已知定义域为的两个函数,对于任意的满足:且 (Ⅰ)求的值并分别写出一个和的解析式,使它们满足已知条件(不要求说明理由) (Ⅱ)证明:是奇函数; (Ⅲ)若,记,求证:
已知、分别是椭圆C:的左焦点和右焦点,O是坐标系原点, 且椭圆C的焦距为6, 过的弦两端点与所成⊿的周长是. (Ⅰ).求椭圆C的标准方程. (Ⅱ)已知点,是椭圆C上不同的两点,线段的中点为. 求直线的方程; (Ⅲ)若线段的垂直平分线与椭圆C交于点、,试问四点、、、是否在同一个圆上,若是,求出该圆的方程;若不是,请说明理由.