小明和小亮是上海某高校的大学生,他们参加世博志愿者选拔并与甲、乙二人都进入了前4名.现从这4名入选者中确定2名作为志愿者.试用画树形图或列表的方法求出小明和小亮同时入选的概率.
已知:的高所在直线与高所在直线相交于点F。(1)如图①,若为锐角三角形,且过点作交直线于点,求证: (2)如图②,若为钝角三角形,且(1)中的其他条件不变,则之间满足怎样的数量关系?并给出证明。
已知,如图,中,,分别以为边作等边三角形和,连结交于求证:
阅读下列材料: 在学习小组,小明接到这样一个任务:把一个正方形分割成9个、10个和11个小正方形。为完成任务,小明先学习了两种简单的“基本分割法”。基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.学习了上述两种“基本分割法”后,小明很从容地就完成了分割的任务:(1)把一个正方形分割成9个小正方形.方法一:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成(个)小正方形.方法二:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成(个)小正方形.(2)把一个正方形分割成10个小正方形.如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加个小正方形,从而分割成(个)小正方形.请你参照上述分割方法解决下列问题(只要求画图,不用说明分割方法):(1)请你替小明同学把图⑥给出的正方形分割成11个小正方形;(2)仿照基本分割法1:请把图a中的正三角形分割成4个小正三角形;(3)仿照基本分割法2:请把图b 中的正三角形分割成6个小正三角形;(4)分别把图c和图d中的正三角形分割成9个和10个小正三角形.
如图,中,,,,求的度数?
某采摘农场计划种植两种草莓共6亩,根据表格信息,解答下列问题:
(1)若该农场每年草莓全部被采摘的总收入为46000O元,那么两种草莓各种多少亩? (2)若要求种植种草莓的亩数不少于种植种草莓的一半,那么种植种草莓多少亩时,可使该农场每年草莓全部被采摘的总收入最多?