小明和小亮是上海某高校的大学生,他们参加世博志愿者选拔并与甲、乙二人都进入了前4名.现从这4名入选者中确定2名作为志愿者.试用画树形图或列表的方法求出小明和小亮同时入选的概率.
如图一,在△ABC中,分别以AB,AC为直径在△ABC外作半圆和半圆,其中和分别为两个半圆的圆心. F是边BC的中点,点D和点E分别为两个半圆圆弧的中点. (1)连结,证明:;(2)如图二,过点A分别作半圆和半圆的切线,交BD的延长线和CE的延长线于点P和点Q,连结PQ,若∠ACB=90°,DB=5,CE=3,求线段PQ的长;(3)如图三,过点A作半圆的切线,交CE的延长线于点Q,过点Q作直线FA的垂线,交BD的延长线于点P,连结PA. 证明:PA是半圆的切线
已知关于的方程有实根.(1)求的值;(2)若关于的方程的所有根均为整数,求整数的值
在平面直角坐标系xOy中,已知抛物线的对称轴是,并且经过(-2,-5)和(5,-12)两点.(1)求此抛物线的解析式;(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标; (3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.
在平面直角坐标系xOy中,反比例函数的图象与抛物线交于点A(3, n). (1)求n的值及抛物线的解析式;(2) 过点A作直线BC,交x轴于点B,交反比例函数()的图象于点C,且AC=2AB,求B、C两点的坐标; (3)在(2)的条件下,若点P是抛物线对称轴上的一点,且点P到x轴和直线BC的距离相等,求点P的坐标.
如图,在△ABC中,∠C=60°,BC=4,AC=,点P在BC边上运动,PD∥AB,交AC于D. 设BP的长为x,△APD的面积为y .(1)求AD的长(用含x的代数式表示);(2)求y与x之间的函数关系式,并回答当x取何值时,y的值最大?最大值是多少?(3)点P是否存在这样的位置,使得△ADP的面积是△ABP面积的?若存在,请求出BP的长;若不存在,请说明理由.