小明和小亮是上海某高校的大学生,他们参加世博志愿者选拔并与甲、乙二人都进入了前4名.现从这4名入选者中确定2名作为志愿者.试用画树形图或列表的方法求出小明和小亮同时入选的概率.
如图所示,直线AB与x轴交于点A,与y轴交于点C(0,2),且与反比例函数的图象在第二象限内交于点B,过点B作BD⊥x轴于点D,OD=2.(1)求直线AB的解析式;(2)若点P是线段BD上一点,且△PBC的面积等于3,求点P的坐标.
如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE与G点,交DF与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.
(1)解不等式组:.(2)计算:
分解因式: .
已知过原点O的两直线与圆心为M(0,4),半径为2的圆相切,切点分别为P、Q,PQ交y轴于点K,抛物线经过P、Q两点,顶点为N(0,6),且与x轴交于A、B两点.(1)求点P的坐标;(2)求抛物线解析式;(3)在直线y=nx+m中,当n=0,m≠0时,y=m是平行于x轴的直线,设直线y=m与抛物线相交于点C、D,当该直线与⊙M相切时,求点A、B、C、D围成的多边形的面积(结果保留根号).