某居民小区有两个相互独立的安全防范系统(简称系统)甲和乙,系统甲和系统乙在任意时刻发生故障的概率分别为和,若在任意时刻至多有一个系统发生故障的概率为(Ⅰ)求的值;(Ⅱ)设系统乙在次相互独立的检测中不发生故障的次数为随机变量,求的数学期望
对于在区间 [ m,n ] 上有意义的两个函数与,如果对任意,均有,则称与在 [ m,n ] 上是友好的,否则称与在 [ m,n ]是不友好的.现有两个函数与(a > 0且),给定区间. (1)若与在给定区间上都有意义,求a的取值范围; (2)讨论与在给定区间上是否友好.
已知函数 (1)讨论函数的单调性; (2)若时,关于的方程有唯一解,求的值; (3)当时,证明: 对一切,都有成立.
在矩形中,以所在直线为轴,以中点为坐标原点,建立如图所示的平面直角坐标系.已知点的坐标为,E、F为的两个三等分点,和交于点,的外接圆为⊙. (1)求证:; (2)求⊙的方程; (3)设点,过点P作直线与⊙交于M,N两点,若点M恰好是线段PN的中点,求实数的取值范围.
已知函数,. (1)若,求证:函数是上的奇函数; (2)若函数在区间上没有零点,求实数的取值范围.
已知集合,,. (1)当时,求; (2)若,求实数的取值范围.