已知(Ⅰ)若,求使函数为偶函数。(Ⅱ)在(I)成立的条件下,求满足=1,∈[-π,π]的的集合。
如图,在底面是正方形的四棱锥P—ABCD中,PA⊥面ABCD,BD交AC于点E,F是PC中点,G为AC上一点. (I)求证:BD⊥FG; (II)确定点G在线段AC上的位置,使FG//平面PBD,并说明理由.
已知函数的图象经过点(I)求实数a、b的值;(II)若,求函数的最大值及此时x的值.
(本小题共13分)已知数列的前项和为,且.数列满足(),且,.(Ⅰ)求数列,的通项公式;(Ⅱ)设,数列的前项和为,求使不等式对一切都成立的最大正整数的值;(Ⅲ)设是否存在,使得 成立?若存在,求出的值;若不存在,请说明理由.
(本小题共14分)已知椭圆短轴的一个端点,离心率.过作直线与椭圆交于另一点,与轴交于点(不同于原点),点关于轴的对称点为,直线交轴于点.(Ⅰ)求椭圆的方程;(Ⅱ)求 的值.
(本小题共14分)已知函数().(Ⅰ)求函数的单调递减区间;(Ⅱ)当时,若对有恒成立,求实数的取值范围.