(本小题满分10分)选修4—1:几何证明选讲如图,已知是的直径,是的切线,为切点,,交于点,连接、、、,延长交于.(1)证明:;(2)证明:.
如图,在四棱锥中,平面ABCD,底面ABCD是菱形,,.(1)求证:平面PAC;(2)若,求与所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.
计算下列定积分.(1) (2)
定义,,.(1)比较与的大小;(2)若,证明:;(3)设的图象为曲线,曲线在处的切线斜率为,若,且存在实数,使得,求实数的取值范围.
某营养师要为某个儿童预订午餐和晚餐,已知一个单位的午餐含个单位的碳水化合物,个单位的蛋白质和个单位的维生素;一个单位的晚餐含个单位的碳水化合物,个单位的蛋白质和个单位的维生素.另外,该儿童这两餐需要的营养中至少含个单位的碳水化合物,个单位的蛋白质和个单位的维生素.如果一个单位的午餐、晚餐的费用分别是元和元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?
设,. (1)求的取值范围;(2)设,试问当变化时,有没有最小值,如果有,求出这个最小值,如果没有,说明理由.