(本小题满分12分)某电视台有一档综艺节目,其中有一个抢答环节,有甲、乙两位选手进行抢答,规则如下:若选手抢到答题权,答对得20分,答错或不答则送给对手10分。已知甲、乙两位选手抢到答题权的概率均相同,且每道题是否答对的机会是均等的, 若比赛进行两轮.(1)求甲抢到1题的概率;(2)求甲得到10分的概率.
已知等差数列的前项和为,且.(I)求数列的通项公式;(II)若数列满足,求数列的前项和.
某小区要建一座八边形的休闲小区,如右图它在主体造型的平面图是由两个相同的矩形和构成的面积为200平方米的十字形地域。计划在正方形上建一座花坛,造价每平方米4200元,并在四周的四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为每平方米210元,再在四个空角上铺草坪,造价为每平方米80元。 ⑴设总造价为元,长为米,试求关于的函数关系式;⑵当为何值,取得最小值?并求出这个最小值.
如图,已知点在圆柱的底面圆上,为圆的直径,圆柱的表面积为,,。(1)求三棱锥的体积。(2)求异面直线与所成角的余弦值;
中内角的对边分别为,向量 且(1)求锐角的大小;(2)如果,求的面积的最大值
如图,在四棱锥P—ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,PA=AB=4, G为PD中点,E点在AB上,平面PEC⊥平面PDC. (Ⅰ)求证:AG⊥平面PCD; (Ⅱ)求证:AG∥平面PEC; (Ⅲ)求点G到平面PEC的距离.