某小区要建一座八边形的休闲小区,如右图它在主体造型的平面图是由两个相同的矩形和构成的面积为200平方米的十字形地域。计划在正方形上建一座花坛,造价每平方米4200元,并在四周的四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为每平方米210元,再在四个空角上铺草坪,造价为每平方米80元。 ⑴设总造价为元,长为米,试求关于的函数关系式;⑵当为何值,取得最小值?并求出这个最小值.
甲、乙两人玩投篮游戏,规则如下:两人轮流投篮,每人至多投2次,甲先投,若有人投中即停止投篮,结束游戏,已知甲每次投中的概率为,乙每次投中的概率为求: (Ⅰ)乙投篮次数不超过1次的概率. (Ⅱ)记甲、乙两人投篮次数和为ξ,求ξ的分布列和数学期望.
如图,DA⊥平面ABC,DA∥PC,∠ACB=90°,AC=AD=BC=1,PC=2,E为PB的中点. (Ⅰ)求证:DE∥平面ABC; (Ⅱ)求二面角E﹣CD﹣B的余弦值.
设数列{an}是公比为正数的等比数列,a1=2,a3﹣a2=12. (1)求数列{an}的通项公式; (2)设数列{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.
(本小题满分14分)已知二次函数(). (1)当0<<时,()的最大值为,求实数的值; (2)对于任意的 ,总有||.试求的取值范围; (3)若当时,记,令,求证:成立.
(本小题满分14分)已知函数 (1)求函数的最小值; (2)若对所有都有,求实数的取值范围.