某小区要建一座八边形的休闲小区,如右图它在主体造型的平面图是由两个相同的矩形和构成的面积为200平方米的十字形地域。计划在正方形上建一座花坛,造价每平方米4200元,并在四周的四个相同的矩形上(图中阴影部分)铺花岗岩地坪,造价为每平方米210元,再在四个空角上铺草坪,造价为每平方米80元。 ⑴设总造价为元,长为米,试求关于的函数关系式;⑵当为何值,取得最小值?并求出这个最小值.
(本小题满分12分) 己知三顶点的坐标分别为.(1)求的值;(2)若为边上的高,求垂足的坐标;(3)求的面积.
(本小题满分12分) 如图所示,动物园要围成相同面积的长方形虎笼四间,一面可以利用原有的墙,其他各面用钢筋网围成。⑴现有可围36m长钢筋网材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?⑵若使每间虎笼面积为24m2,则每间虎笼的长、宽各设计为多少时,可始围成四间虎笼的钢筋网总长最小?
设的内角的对边分别为,且满足. (Ⅰ)求的大小; (Ⅱ)求的取值范围.
(本小题满分12分) 已知函数,为实数)有极值,且在处的切线与直线平行. (I)求实数a的取值范围;(II)是否存在实数a,使得函数的极小值为1,若存在,求出实数a的值;若不存 在,请说明理由; (Ⅲ)设 求证:.
(本小题满分12分) 已知函数为奇函数,函数在区间上单调递减,在上单调递增. (I)求实数的值; (II)求的值及的解析式; (Ⅲ)设,试证:对任意的且都有.