(本小题满分14分)已知函数,().(1)若,求函数的极值;(2)设函数,求函数的单调区间;(3)若在()上存在一点,使得成立,求的取值范围.
(本小题满分12分)在中,角所对的边分别是,若,且. (1)求的值; (2)若,求的面积.
(本小题满分12分)已知函数的部分图象如图所示. (1)试确定函数的解析式; (2)若,求的值.
(本小题满分12分)已知向量,,函数. (1)求函数的最大值,并写出相应的取值集合; (2)若,且,求的值.
已知函数,其中 (Ⅰ)若,试判断函数的单调性,并说明理由; (Ⅱ)设函数,若对任意的,总存在唯一的实数,使得成立,试确定实数的取值范围.
若数列满足:对于,都有(为常数),则称数列是公差为的“隔项等差”数列. (Ⅰ)若,是公差为8的“隔项等差”数列,求的前项之和; (Ⅱ)设数列满足:,对于,都有. ①求证:数列为“隔项等差”数列,并求其通项公式; ②设数列的前项和为,试研究:是否存在实数,使得成等比数列()?若存在,请求出的值;若不存在,请说明理由.