设f(x)是定义在R上的偶函数,其图像关于直线x=1对称,对任意x1、x2∈[0,],都有f(x1+x2)=f(x1)·f(x2),且f(1)=a>0. (1)求f()、f();(2)证明f(x)是周期函数;(3)记an=f(2n+),求
已知. (1)求的单调区间; (2)令,则时有两个不同的根,求的取值范围; (3)存在,且,使成立,求的取值范围.
在数列中,,,,其中. (1)求证:数列为等差数列; (2)设,试问数列中是否存在三项,它们可以构成等差数列?若存在,求出这三项;若不存在,说明理由. (3)已知当且时,,其中,,,,求满足等式的所有的值.
已知椭圆的中心在原点,焦点在轴上,椭圆上的点到焦点的距离的最小值为,离心率为. (1)求椭圆的标准方程; (2)过点作斜率为的直线交于、两点,点是点关于轴的对称点,求证直线过定点,并求出定点坐标.
如图,四棱锥的底面是平行四边形,平面,是中点,是中点. (1)求证:面;(2)若面面,求证:.
已知函数,. (1)求函数的最小值和最小正周期; (2)设的内角、、的对边分别为,,,且,,若,求,的值.