(本题满分 12 分)本题共有 3 个小题,第 1 小题满分 3分,第 2 小题满分 4分,第 3小题满分5 分.设数列的首项为常数,且.(1)证明:是等比数列;(2)若,中是否存在连续三项成等差数列?若存在,写出这三项,若不存在说明理由.(3)若是递增数列,求的取值范围.
已知函数(1)求函数在区间上的最大值和最小值,(是自然对数的底数),(2)求证:在区间上,函数的图像在函数的图像的下方。
已知有如下等式:当时,试猜想的值,并用数学归纳法给予证明。
将4个编号为1,2,3,4的不同小球全部放入4个编号为1,2,3,4的4个不同盒子中,求:(1)每盒至少一个球,有多少种放法?(2)恰好有一个空盒,有多少种放法?(3)每盒放一个球,并且恰好有一个球的编号与盒子的编号相同,有多少种放法?(4)把已知中4个不同的小球换成四个完全相同的小球(无编号),其余条件不变,恰有一个空盒,有多少种放法?
已知复数,当实数m取何值时,复数是:(1)零; (2)纯虚数; (3)
已知函数f(x)=x2-alnx(a∈R).(1)若a=2,求f(x)的单调区间和极值;(2)求f(x)在[1,e]上的最小值.