(本小题满分13分)等差数列的前项和,数列满足.同学甲在研究性学习中发现以下六个等式均成立:①;②;③;④;⑤;⑥.(1)求数列的通项公式,并从上述六个等式中选择一个,求实数的值;(2)根据(1)计算结果,将同学甲的发现推广为关于任意角的三角恒等式,并证明你的结论.
已知函数y=Asin(ωx+φ)(A>0、ω>0,|φ|<)的图象的一个最高点为(2,2),由这个最高点到相邻最低点,图象与x轴交于(6,0)点,试求这个函数的解析式.
如图为函数y=Asin(ωx+φ)的图象的一段.试确定函数y=Asin(ωx+φ)的解析式.
(本小题满分16分)已知 (I)如果函数的单调递减区间为,求函数的解析式; (II)在(Ⅰ)的条件下,求函数的图像在点处的切线方程; (III)若不等式恒成立,求实数的取值范围.
(本小题满分14分)在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.(Ⅰ)求抛物线的方程;(Ⅱ)是否存在点,使得直线与抛物线相切于点若存在,求出点的坐标;若不存在,说明理由.
如图,在矩形ABCD中,AB=2BC,点M在边CD上,点F在边AB上,且,垂足为E,若将沿AM折起,使点D位于位置,连接,得四棱锥. (1)求证:;(2)若,直线与平面ABCM所成角的大小为,求直线与平面ABCM所成角的正弦值.