设△的面积为,且.(1)求角的大小;(2)若,且角不是最小角,求的取值范围.
现就某地居民的月收入调查了人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在). (Ⅰ)求居民月收入在的频率; (Ⅱ)根据频率分布直方图算出样本数据的中位数; (Ⅲ)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中分层抽样方法抽出人作进一步分析,则月收入在的这段应 抽出多少人?
已知在与时都取得极值. (Ⅰ)求的值; (Ⅱ)若,求的单调区间和极值.
甲、乙两个箱子中装有大小相同的小球,甲箱中有2个红球和2个黑球,乙箱中装有2个黑球和3个红球,现从甲箱和乙箱中各取一个小球并且交换. (Ⅰ)求交换后甲箱中刚好有两个黑球的概率; (Ⅱ)设交换后甲箱中黑球的个数为,求的分布列和数学期望.
过点作倾斜角为的直线与曲线交于点, 求的最小值及相应的值.
(从22/23/24三道解答题中任选一道作答,作答时,请注明题号;若多做,则按首做题计入总分,满分10分. 请将答题的过程写在答题卷中指定的位置)(本小题满分10分)选修4—5:不等式选讲 设函数. (Ⅰ)求不等式的解集; (Ⅱ)若不等式的解集是非空的集合,求实数的取值范围.