现有4个人去参加娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏。 (Ⅰ)求这4个人中恰有2人去参加甲游戏的概率; (Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率; (Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望 .
(本小题满分10分)在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.(1)求角C的大小;(2)求sinA-cos的最大值,并求取得最大值时角A,B的大小.
(本小题10分)选修4—5:不等式选讲已知对于任意的非零实数,不等式恒成立,求实数的取值范围.
(本小题10分)选修4—4:坐标系与参数方程设椭圆的普通方程为(1)设为参数,求椭圆的参数方程;(2)点是椭圆上的动点,求的取值范围.
(本小题12分)已知函数(1)求函数的单调区间和极值;(2)已知的图象与函数的图象关于直线对称,证明:当时,;(3)如果且,证明:
(本小题12分)已知椭圆,斜率为的直线交椭圆于两点,且点在直线的上方,(1)求直线与轴交点的横坐标的取值范围;(2)证明:的内切圆的圆心在一条直线上.