如图,已知椭圆的右顶点为A(2,0),点P(2e,)在椭圆上(e为椭圆的离心率).(1)求椭圆的方程;(2)若点B,C(C在第一象限)都在椭圆上,满足,且,求实数λ的值.
已知函数(1)求函数的单调区间与极值点;(2)若,方程有三个不同的根,求的取值范围。
设二次方程,有两根和,且满足,(1)试用表示;(2)证明是等比数列;(3)设,,为的前n项和,证明,()。
已知:对,函数总有意义;函数在上是增函数;若命题“或”为真,求的取值范围。
我舰在敌岛A处南偏西50°的B处,且AB距离为12海里,发现敌舰正离开岛沿北偏西10°的方向以每小时10海里的速度航行,若我舰要用2小时追上敌舰,求速度大小.
已知向量,,函数,(1)求的最小正周期;(2)当时,求的单调递增区间;(3)说明的图像可以由的图像经过怎样的变换而得到。