(本小题满分14分)已知二次函数(). (1)当0<<时,()的最大值为,求实数的值; (2)对于任意的 ,总有||.试求的取值范围; (3)若当时,记,令,求证:成立.
某单位为了提髙员工身体素质,特于近期举办了一场跳绳比赛,其中男员工12人,女员工18人,其成绩编成如右所示的茎叶图(单位:分).若分数在175分以上(含175分)者定为“运动健将”,并给以特别奖励,其它人员则给予“运动积极分子”称号,同时又特别提议给女“运动健将”休假一天的待遇.(1)若用分层抽样的方法从“运动健将”和“运动积极分子”中提取10人,然后再从这10人中选4人,那么至少有1人是“运动健将”的概率是多少?(2)若从所有“运动健将”中选3名代表,用表示所选代表中女“运动健将”的人数,试写出的分布列,并求的数学期望.
已知函数,的部分图象如图所示.(1) 求函数的解析式;(2) 如何由函数的图象通过适当的平移与伸缩变换得到函数的图象,写出变换过程.
已知奇函数是定义域为的减函数(Ⅰ)求的值;(Ⅱ)若对任意的,不等式恒成立,求的取值范围;
已知三角形的顶点坐标为,,,是边上的中点。(Ⅰ)求边所在直线的方程;(Ⅱ)求中线的长;(Ⅲ)求边的高所在直线的方程。
如图,已知在侧棱垂直于底面三棱柱ABC—A1B1C1中,AC=3,AB=5,BC=4,AA1=4,点D是AB的中点. (Ⅰ)求证:AC⊥BC1;(Ⅱ)求证:AC1∥平面CDB1.