(本小题满分12分)某学校一个生物兴趣小组对学校的人工湖中养殖的某种鱼类进行观测研究,在饲料充足的前提下,兴趣小组对饲养时间x(单位:月)与这种鱼类的平均体重y(单位:千克)得到一组观测值,如下表:
(1)在给出的坐标系中,画出关于x、y两个相关变量的散点图. (2)请根据上表提供的数据,用最小二乘法求出变量关于变量的线性回归直线方程.(3)预测饲养满12个月时,这种鱼的平均体重(单位:千克).(参考公式:,)
已知是椭圆的左焦点,是椭圆短轴上的一个顶点,椭圆的离心率为,点在轴上,,三点确定的圆恰好与直线相切.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在过作斜率为的直线交椭圆于两点,为线段的中点,设为椭圆中心,射线交椭圆于点,若,若存在求的值,若不存在则说明理由.
设函数.(Ⅰ)若时函数有三个互不相同的零点,求的取值范围;(Ⅱ)若函数在内没有极值点,求的取值范围;(Ⅲ)若对任意的,不等式在上恒成立,求的取值范围.
已知各项均为正数的数列满足,且.(Ⅰ)求的值;(Ⅱ)求证:是等差数列;(Ⅲ)若,求数列的前项和.
如图,垂直于矩形所在的平面,分别是、的中点.(Ⅰ)求证:平面;(Ⅱ)求证:平面平面;(Ⅲ)求二面角的大小.
在两个袋内,分别装有编号为四个数字的张卡片,现从每个袋内任取一张卡片.(Ⅰ)利用卡片上的编号写出所有可能抽取的结果;(Ⅱ)求取出的卡片上的编号之和不大于的概率;(Ⅲ)若第一个袋内取出的卡片上的编号记为,第二个袋内取出的卡片上的编号记为,求的概率.